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Abstract

With the trend toward high-speed, lightweight, supercritical drivelines, it is increasingly important to
understand all instability phenomena associated with realistic driveline configurations. Furthermore, it is
important to understand the interaction between different instability mechanisms. One well-known
phenomenon that occurs with supercritical shafts is whirl instability due to internal (rotating-frame) shaft
damping. Whirl instability occurs at shaft speeds above the first critical speed and is related to the internal/
external-damping ratio. Another less explored instability phenomena is parametric instability caused by
non-constant velocity flexible couplings, e.g., U-joint couplings or disk couplings, combined with driveline
misalignment and load-torque. Previous research examined stability of various single U-joint/shaft systems
without shaft internal damping. However, it is difficult to fully understand the stability of more realistic
multi-U-joint/flexible shaft drivelines based on the single U-joint studies due to the more complicated shaft
speed kinematics and misalignment configurations of multi-U-joint systems. In this paper, the non-
dimensional, linear, periodically time-varying equations-of-motion for a segmented triple-U-joint driveline
with shaft internal damping are derived. Torsional and lateral shaft flexibly and their effects on the shaft
speed kinematics are included in the model. Numerical Floquet theory is used to explore the effects of
internal/external damping ratio, misalignment, load-inertia and load-torque on the stability of the driveline
operating at both sub and supercritical speeds. It is discovered that misalignment and load-torque have
both stabilizing and destabilizing effects. On one-hand, misalignment and load-torque tend to stabilize
internal damping-induced whirl, however, they cause instability at speeds near bending–bending and
bending–torsion sum-type combination frequencies. Finally, it is shown that external damping is not
always effective for stabilizing the misalignment and torque induced parametric instabilities.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that internal shaft (rotating-frame) damping causes whirl instability for shafts
operating above their first bending natural frequency. Thus, all drivelines which operate in the
supercritical regime require auxiliary fixed-frame lateral damping to prevent instability. Zorzi and
Nelson [1], studied the effects of internal damping and gyroscopic effects on the stability of a
flexible shaft. Here they derived an expression for the dissipation functions for both shaft viscous
and shaft hysteretic damping in fixed-frame co-ordinates. They concluded, that without auxiliary
fixed-frame damping, viscous internal damping tended to destabilize the shaft when the rotational
speed exceeded the first bending natural frequency. Chen and Ku [2], furthered the stability
investigation of supercritical shafts by studying the whirl-speeds using a finite element approach.
Here, transverse shear, gyroscopic effects, internal damping, and different boundary conditions
were included in the analysis.

Another less recognized source driveline instability is caused by the flexible couplings, which
connect the shaft segments. Universal Joints (U-joints) and disk couplings, which have similar
kinematics, are widely used in power transmission applications since they are relatively
inexpensive and easy to maintain. Additionally, U-joints can accommodate relatively large
angular misalignments and have high torque and axial load capacity. Despite these advantages,
their non-constant velocity kinematics can lead to undesirable vibration and even instability under
certain operating conditions.

Several researchers have investigated the stability of rotor–shaft systems involving a single
U-joint coupling. Iwatsubo and Saigo [3] studied the effect of a static follower load-torque on the
lateral stability of a nominally aligned rigid rotor–disk mounted on a compliant bearing and
driven through a U-joint. They derived expressions for parametric and self-exciting transverse
moments created by torque transmitted through the U-joint. It was determined that static load-
torque induced parametric instabilities for shaft speeds near the sum-type combinations of the
transverse natural frequencies. Mazzei et al. [4] considered the effect of lateral shaft flexibility on
the stability of a misaligned shaft driven by a single U-joint subjected to a static follower load-
torque. Torsional flexibility was not considered since the shaft was not carrying a rotor–disk or
torsional inertia-load. They found that static load-torque caused parametric instability for
rotational speeds near sum-type combinations of the shaft bending natural frequencies.

Asokanthan and Hwang [5] and Asokanthan and Wang [6] studied the stability of two torsionally
flexible, misaligned shafts coupled by a U-joint. In their analyses the shafts were driving an inertia-
load and the lateral shaft orientations were fixed, hence only torsional dynamics were considered.
Refs. [5,6] concluded that shaft speed variation due to angular misalignment caused parametric
instabilities near principle and sum-type combinations of the torsional natural frequencies. Ref. [5]
also concluded that the addition of viscous torsional damping had a stabilizing effect for principle
instability zones, but destabilized the sum-type combination instability zones.

DeSmidt et al. [7] considered load-torque, load-inertia and misalignment angle on the stability
of a shaft–disk assembly supported on a compliant bearing/damper and driven with a single
U-joint. In this analysis, both torsional and lateral flexibility were considered and it was
discovered that load-inertia and misalignment together caused periodic inertia coupling of the
torsion and lateral modes. This interaction caused torsion–lateral parametric instability for shaft
speeds near the torsion–lateral sum combinations. Additionally, it was shown that misalignment
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had a stabilizing effect on the load-torque induced flutter instability near the torsional–lateral
difference combination frequencies. Finally, Ref. [7] showed that the torsion–lateral instabilities
could be stabilized with sufficient lateral viscous damping.

Kato and Ota [8], studied U-joint frictional effects of a misaligned shaft driven by a single
U-joint. They concluded that internal friction in the U-joint generates harmonic lateral moments
which occur at even multiples of the shaft operating speed, i.e., 2O; 4O;y; etc. Additionally, they
demonstrated that these lateral moments are suppressed if the friction coefficients of the driven
and driving yokes are equal.

Several researchers [9–11] investigated the steady-state response of misaligned shaft/U-joint
systems. Specifically, Refs. [10,11] studied a laterally flexible, torsionally rigid, shaft between two
U-joints using the harmonic balance method. Rosenberg and Ohio [10] considered a double
U-joint/shaft–disk system with both joint misalignment angles in the same plane. Here it was
discovered that the combination of misalignment and disk imbalance resulted in shaft vibration at
odd integer multiple harmonics of the shaft operating speed, i.e., O; 3O;y, etc. Sheu et al. [11],
studied the response under a more general misalignment configuration with joint misalignment
angles in two orthogonal planes along with shaft imbalance and U-joint friction. Here it was
shown that when the U-joints were phased by 90� and the input and output-shafts had the same
misalignment, the so-called parallel offset condition, there was no speed variation between input
and output-shafts. However, this ideal kinematic condition was distorted by lateral bending
vibration of the intermediate shaft, which resulted in harmonic lateral moments at even multiples
of the operating speed. Additionally, it was shown that differences between U-joint friction
coefficients caused axial torque fluctuations.

2. Problem statement and research objective

As illustrated in Section 1, many researchers have studied the stability of shafts operating at
supercritical speeds, where it has been shown that internal (rotating-frame) damping tends to
cause whirl instability dependinthe amount of external (fixed-frame) damping present. However,
the effect of non-constant velocity couplings has not been included in these analyses. Some
researchers explored the stability of single U-joint/shaft–disk systems, where its been shown that
misalignment and load-torque generate periodic parametric terms that cause instability near
certain shaft speeds. While the results were interesting, the single U-joint system does not really
resemble a typical driveline. Furthermore, previous analyses of double U-joint/shaft systems only
considered the periodic moment forcing terms, but neglected the potentially destabilizing periodic
parametric terms. Hence, the stability behavior of a segmented driveline involving multiple non-
constant velocity couplings has not been studied. Since most drivelines consist of two or more
flexible couplings, depending on the number of segments, it is important to understand the effect
of misalignment and load-torque on the stability of such multi-coupling/shaft systems.
Furthermore, with the trend toward supercritical drivelines, the interaction between different
instability regions due to misalignment, load-torque and the rotating-frame damping-induced
whirl instability must be assessed. The objective of this research is to address these issues and
investigate the stability of a multi-segment supercritical driveline with non-constant velocity
couplings subjected to misalignment and torque.

ARTICLE IN PRESS

H.A. DeSmidt et al. / Journal of Sound and Vibration 277 (2004) 895–918 897



3. System description and equations of motion

Equations of motion are derived for the segmented driveline system shown in Fig. 1. The system
consists of a fixed input-shaft, a fixed output-shaft and two flexible intermediate shafts with length
L: The shafts are connected by U-joint couplings A, B and C, that are nominally phased about the
rotation axis by 90�, as is typically the case. Specifically, the U-joint phase angles are cA ¼ 0;
cB ¼ p=2 and cC ¼ 0: The intermediate shafts are flexible in bending and torsion and are
supported on a rigid bearing. Also, the U-joints are assumed to be rigid in the transverse
directions thus giving the intermediate shaft segments pinned–pinned transverse boundary
conditions. Two mid-span dampers, with damping coefficient Cd ; provide auxiliary lateral viscous
damping in the fixed-frame to counteract the destabilizing effects of the shaft internal damping.

Here, fmg ¼ ½m1;m2;m3� is a fixed co-ordinate frame aligned with the intermediate shafts with
m2 into the page. The transverse displacements measured from the fmg frame are defined as

vðx; tÞ ¼
v1ðx; tÞ; 0pxpL;

v2ðx 	 L; tÞ; Lpxp2L;

"

wðx; tÞ ¼
w1ðx; tÞ; 0pxpL;

w2ðx 	 L; tÞ; Lpxp2L;

" ð1Þ

where vðx; tÞ and wðx; tÞ measure deflection in the m2 and m3 directions. The total shaft rotational
angle, fðx; tÞ; and elastic windup angle, #fðx; tÞ; are defined as

fðx; tÞ ¼
f1ðx; tÞ ¼ %f1ðtÞ þ #f1ðx; tÞ; 0pxpL;

f2ðx 	 L; tÞ ¼ %f2ðtÞ þ #f2ðx 	 L; tÞ; Lpxp2L;

"

fðx; tÞ ¼
#f1ðx; tÞ; 0pxpL;

#f2ðx 	 L; tÞ; Lpxp2L;

"
ð2Þ

where %fiðx; tÞ are rigid-body rotations and #fiðx; tÞ are elastic twist deformations of the
intermediate shafts. It is assumed that the input-shaft is driven at a constant speed, O0; and the
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output-shaft drives both a torsional inertia-load, JL; and a resistive torque-load, TL; with rotation
angle fL; and rotation speed OL: Finally, it is assumed that the driveline is subjected to static
angular misalignments, d and g; in the m1–m3 plane at the input- and output-shafts, respectively.

Since U-joints have non-constant velocity kinematics, the rotation speed of the shaft segments
deviate from each other as a function of the angular misalignment between the segments. Fig. 2
shows the Pth U-joint, with phase angle cP; connecting the misaligned flexible shaft segments
i 	 1 and i of lengths Li	1 and Li:

The total effective misalignment is the sum of the nominal static misalignments, yv;P and yw;P;
plus the net dynamic misalignments at the Pth coupling due to bending. The dynamic
misalignments at the Pth coupling are defined in terms of the elastic slopes as v0p ¼ v0i;P 	 v0i	1;P and
w0

P ¼ w0
i;P 	 w0

i	1;P; where

v0i	1;P � v0i	1ðx; tÞ
��
x¼Li	1

; v0i;P � v0iðx; tÞ
��
x¼0

;

w0
i	1;P � w0

i	1ðx; tÞ
��
x¼Li	1

; w0
i;P � w0

iðx; tÞ
��
x¼0

:
ð3Þ

Here, the ‘‘0 ’’ indicates differentiation with respect to the axial co-ordinate, x: The total rotation
angle of the i 	 1th shaft at the Pth U-joint due to rigid-body rotation and elastic windup is
fi	1;PðtÞ:

fi	1;PðtÞ ¼ %fi	1ðtÞ þ #fi	1ðx; tÞ
��
x¼Li	1

: ð4Þ

Using the kinematic expression derived in Ref. [7] for the U-joint driven-yoke spin angle, the
rotation co-ordinate, fiðx; tÞ; of the ith shaft can be expressed as

fiðx; tÞ ¼ %fiðtÞ þ #fiðx; tÞ; 0oxoLi ð5aÞ

with

%fiðtÞ ¼ %fi	1ðtÞ þ
sinð2½fi	1;P þ cP�Þ

4
½ðv0P þ yv;PÞ

2 	 ðw0
P þ yw;PÞ

2�

	
cosð2½fi	1;P þ cP�Þ

2
ðv0P þ yv;PÞðw0

P þ yw;PÞ

þ 1
2ðyv;P þ v0i;PÞðyw;P 	 w0

i	1;PÞ 	
1
2ðyw;P þ w0

i;PÞðyv;P 	 v0i	1;PÞ: ð5bÞ

By successively applying Eq. (5) starting with the input-shaft, i 	 1 ¼ 0; with given input rotation
angle, f0 ¼ %f0 ¼ O0t; at U-joint A, and proceeding through U-joints B and C to the output-shaft,
expressions for the intermediate and output-shaft rotation angles, fðx; tÞ and fLðtÞ; are obtained.
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Eq. (6) shows the output-shaft rotation angle:

fLðtÞ ¼ #f2;C þ f0 þ
1
2
dv01;A þ v01;Bw0

2;B 	 v02;Bw0
1;B þ gv02;C

� �
þ d2

8
v02;Cðg	 w0

2;CÞ þ v0Bw0
B

� �
þ 1

4
sinð2f0Þ v021;A 	 ðdþ w0

1;AÞ
2 	 4 #f1;Bv0Bw0

B 	 ð1	 2 #f2
1;BÞðv

02
B 	 w02

B Þ
h i

	 1
4
sinð2f0Þ 4 #f2;Cv02;Cðg	 w0

2;CÞ 	 ð1	 2 #f2
2;CÞðv

02
2;C 	 ðg	 w0

2;CÞ
2Þ

h i
	 1

2
cosð2f0Þ ðdþ w0

1;AÞv
0
1;A 	 ð1	 2 #f2

1;BÞv
0
Bw0

B þ #f1;Bðv02B 	 w02
B Þ

h i
þ 1

2
cosð2f0Þ ð1	 2 #f2

2;CÞv
0
2;Cðg	 w0

2;CÞ þ #f2;Cðv022;C 	 ðg	 w0
2;CÞ

2Þ
h i

ð6aÞ

with elastic windup angles at U-joints B and C defined as

#f1;BðtÞ ¼ fsBþ #f1ðx; tÞ
��
x¼L

and #f2;CðtÞ ¼ fsC þ #f2ðx; tÞ
��
x¼L

; ð6bÞ

where fsB and fsC are static portions of the elastic windup due to the torque-load, TL: In the
above expressions small misalignments are assumed, i.e., d and gp10�: Finally, differentiating the
shaft rotation angles with respect to time yields the intermediate and output-shaft rotation speeds,
Oðx; tÞ ¼ ’fðx; tÞand OLðtÞ ¼ ’fLðtÞ; where the ‘‘’’ indicates time differentiation.

The kinetic energy of the driveline system is

T ¼
Z 2L

0

m

2
ð’v2 þ ’w2Þ þ

Im

2
ð ’v02 þ ’w02Þ þ

Jm

2
O2 þ O½w0 ’v0 	 v0 ’w0�
� 	
 �

dx þ
JL

2
O2

L; ð7Þ

where m is the shaft mass per unit length and Im and Jm are the shaft cross-sectional transverse
and polar mass moments of inertia. Since, it is assumed that JmL5JL; the effect of the
intermediate shaft speed variation on the equations-of-motion is negligible compared to the effect
of the output-shaft speed variation. Hence the full expressions for fLðtÞ and OLðtÞ are used in the
derivation but fðx; tÞ and Oðx; tÞ are approximated as

fðx; tÞEO0t þ #fðx; tÞ and Oðx; tÞEO0 þ
’#fðx; tÞ: ð8Þ

The driveline strain energy is expressed as

V ¼
Z 2L

0

EI

2
ðv002 þ w002Þ þ

GJ

2
#f02


 �
dx: ð9Þ

here E and G are the shaft material elastic and shear moduli and I and J are the cross-sectional
transverse and polar area moments of inertia. To account for shaft structural damping in the
rotating-frame and auxiliary damping in the fixed-frame, a Rayleigh dissipation function, D; is
constructed similar to [1]

D ¼ xv

Z 2L

0

EI

2
ð’v002 þ ’w002 þ 2O0½’v00w00 	 ’w00v00� þ O2

0½v
002 þ w002�Þ þ

GJ

2
’#f02


 �
dx

þ
Cd

2
ð’v2 þ ’w2Þ

����
x¼L=2

þ
Cd

2
ð’v2 þ ’w2Þ

����
x¼LþL=2

: ð10Þ

here xv is the shaft material loss-factor and Cd is the fixed-frame damper damping coefficient.

ARTICLE IN PRESS

H.A. DeSmidt et al. / Journal of Sound and Vibration 277 (2004) 895–918900



To obtain equations-of-motion, the transverse deflections, vðx; tÞ and wðx; tÞ; and elastic
twisting, #fðx; tÞ; are written in terms of the modal expansion

vðx; tÞ ¼ FvðxÞZðtÞ; wðx; tÞ ¼ FwðxÞZðtÞ; #fðx; tÞ ¼ FfðxÞZðtÞ; ð11Þ

where ZðtÞ is the n � 1 column vector of modal co-ordinates and FvðxÞ; FwðxÞ and FfðxÞ are the
corresponding row vectors of assumed mode shapes:

FvðxÞ ¼
Fv1ðxÞ ¼ ½L sin px

L
0 0 0 L sin 2px

L
0 0 0 0 �; 0pxpL;

Fv2ðxÞ ¼ ½ 0 0 Lsin pðx	LÞ
L

0 0 0 L sin 2pðx	LÞ
L

0 0 �; Lpxp2L;

(

FwðxÞ ¼
Fw1ðxÞ ¼ ½ 0 L sin px

L
0 0 0 L sin 2px

L
0 0 0 �; 0pxpL;

Fw2ðxÞ ¼ ½ 0 0 0 L sin pðx	LÞ
L

0 0 0 L sin 2pðx	LÞ
L

0 �; Lpxp2L;

(

FfðxÞ ¼ 0 0 0 0 0 0 0 0
x

2L

h i
; 0pxp2L: ð12Þ

here, FvðxÞ and FwðxÞ; contain the first two pinned–pinned bending mode shapes for both
intermediate shafts and FfðxÞ; is composed of the first fixed–free twisting mode shape.

After substitution of the modal expansions given in Eqs. (11) and (12), the functional
representation of the output-shaft speed and rotation angle becomes

fL ¼ fLðt;O0; d; g; ZÞ and OL ¼ OLðt;O0; d; g; Z; ’ZÞ: ð13Þ

The virtual work, dWTL
; and corresponding generalized force vector,QTL

; due to the output-shaft
resistive torque load, TL; are written as

dWTL
¼ 	TLdfL � QT

TL
dZ with dfL ¼

@fL

@Z


 �T

dZ; thus QTL
¼ 	TL

@fL

@Z
: ð14Þ

After substituting the modal expansions into the energy and dissipation expressions in Eqs. (7),
(9) and (10), the equation-of-motion, is obtained via Lagrange’s equation:

d

dt

@T

@’Z


 �
	

@T

@Z
þ

@V

@Z
þ

@D

@’Z
	 QTL

¼M.Zþ Gþ Csd þ Caux½ �’Zþ Kþ Krd½ �Z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Nominal system

þ JL
’OL

@OL

@’Z
þ JLOL

d

dt

@OL

@’Z


 �
	

@OL

@Z

� �
þ TL

@fL

@Z
¼ 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Misalignment & torque terms

;

ð15Þ
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where nominal system matrices are

M ¼
Z 2L

0

mðFT
v Fv þ FT

wFwÞ þ ImðF0T
v F0

v þ F0T
w F0

wÞ þ Jm FT
fFf

� �h i
dx;

G ¼ JmO0

Z 2L

0

½F0T
v F0

w 	 F0T
w F0

v� dx

Csd ¼ xv

Z 2L

0

EIðF
00T
v F00

v þ F
00T
w F00

wÞ þ GJðF0T
f F

0
fÞ

h i
dx;

Caux ¼ cd ðFT
v Fv þ FT

wFwÞ
��
x¼L=2

þðFT
v Fv þ FT

wFwÞ
��
x¼3L=2

h i
;

K ¼
Z 2L

0

EIðF
00T
v F00

v þ F
00T
w F00

wÞ þ GJðF0T
f F

0
fÞ

h i
dx;

Krd ¼ xvEIO0

Z 2L

0

½F
00T
v F00

w 	 F
00T
w F00

v � dx; ð16Þ

M;G and K are shaft inertia, gyroscopic and elastic stiffness matrices, Csd and Caux are the shaft
structural and auxiliary damping matrices, and Krd is the skew-symmetric stiffness matrix due to
the rotating-frame damping. The terms due to misalignment, load-inertia and load-torque are
obtained by substituting the expressions for fL and OL into Eq. (15) and taking the necessary
partial and time derivatives. After this procedure it becomes apparent that

d

dt

@OL

@’Z


 �
	

@OL

@Z
¼ 0: ð17Þ

After substituting Eq. (17) into Eq. (15), the resulting terms due to misalignment and load-inertia
are reduced to, JL

’OLð@OL=@’ZÞ; and terms due to misalignment and load-torque are TLð@fL=@ZÞ:
By assuming the dynamic misalignments are an order-of-magnitude smaller than the static
misalignments and dropping higher-order terms, the equation-of-motion becomes linearized. In
the following Eq. (18a) is the nominal equation-of-motion, which assumes no misalignment and
no load-torque. Furthermore, Eq. (18b) gives the full equation-of-motion that contains
periodically time-varying parametric and forcing terms due to misalignment, load-inertia, and
load-torque

%M %Z
nn

þ %Gþ %Csd þ %Caux

� �
%Z
n

þ %Kþ %Krd

� �
%Z ¼ 0; ð18aÞ

%M %Z
nn

þ %Gþ %Csd þ %Caux

� �
%Z
n

þ %Kþ %Krd

� �
%Zþ %M0 þ %Mc2 cosð2f0 %tÞ þ %Ms2 sinð2f0 %tÞ

� �
%Z
nn

þ %C0 þ %Cc2 cosð2f0 %tÞ þ %Cs2 sinð2f0 %tÞ
� �

%Z
n

þ %K0 þ %Kc2 cosð2f0 %tÞ þ %Ks2 sinð2f0 %tÞ
� �

%Z

¼ %F0 þ %Fc2 cosð2f0 %tÞ þ %Fs2 sinð2f0 %tÞ: ð18bÞ

Here the equations have been non-dimensionalized with respect to the first pinned–pinned
bending frequency, OND; and the intermediate shaft segment length L: The ‘‘�’’ operator indicates
differentiation with respect to non-dimensional (ND) time, %t: The relevant ND parameters for a
solid circular cross-section shaft are shown in below, and the ND matrices in Eq. (18) are defined
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in Appendix A:

OND ¼

ffiffiffiffiffiffiffiffiffiffiffi
EIp4

mL4

s
; %t ¼ tOND; %x ¼

x

L
; %v ¼

v

L
; %w ¼

w

L
; e ¼

d

L
; ð19Þ

where the ND shaft displacements are %v; %w and the ND axial co-ordinate is %x: Also, the shaft
slenderness ratio based on diameter, d; is e:

m ¼
JL

mL3
; t ¼

TL

mL3O2
ND

; tmax ¼
2eshear

ep4ð1þ uÞ
; kf ¼

1

2p4ð1þ uÞ
; fs ¼ 	

t
kf

: ð20Þ

Also, m and t are the ND load-inertia and load-torque parameters and tmax is the maximum load-
torque parameter based on the material shear-yield strain, eshear; and the Poisson ratio, u: The ND
torsion stiffness is, kf; and the static windup angle of the driveline at U-joint C, due to t; is fs:

f0 ¼
O0

OND

; f1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ e2p2=16

s
E1;

f2 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ e2p2=4

s
E4; ff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf

mþ e2=12

s
E

ffiffiffiffiffiffi
kf

m

s
: ð21Þ

The ND input-shaft speed is f0; the first two ND bending natural frequencies are f1 and f2 and
the first ND torsion natural frequency is ff:

%xv ¼ xvOND; cd ¼
Cd

mLOND

; rd ¼
cd

%xv

: ð22Þ

Furthermore, %xv is the ND shaft material damping loss-factor, cd is the ND auxiliary damping
coefficient and rd is the ratio of external to internal damping. Finally, the driveline equation-of-
motion (18) is valid under the parameter constraints:

e51; JmL5JL ) ff5
2

ep2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

5ð1þ uÞ

s
; totmax: ð23Þ

In Eq. (18), the ND nominal system matrices are %M; %G; %Csd ; %Caux; %K; and %Krd and the remaining
matrices are due the non-constant velocity effects combined with misalignment, load-inertia and
load-torque. Specifically, the inertia matrices, %M0; %Mc2 and %Ms2; and damping matrices,
%C0; %Cc2 and %Cs2; are functions of the misalignment angles, d and g, and inertia-load parameter,
m: Moreover, the stiffness matrices, %K0; %Kc2 and %Ks2; and forcing terms, %F0; %Fc2 and %Fs2; are
functions of d; g; m along with the load-torque parameter, t, and the static windup angle fs:

4. Stability analysis

In the following sub-sections, the stability behavior of Eqs. (18a) and (18b) is analyzed. To
establish a baseline for studying the stability of the full system (18b), the effect of shaft internal
and external damping on the stability of the nominal system (18a) is first examined. Next, the
stability of the full system is explored including the effects of internal and external damping,
driveline misalignment, and load-torque.
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As a basis for analysis, the parameters of a typical supercritical driveline are used in the
equations. The shaft slenderness ratio is e ¼ 0:012 and the ND material loss-factor is
%xv ¼ 0:004; which corresponds a 0.2% first mode damping ratio typical for metal alloy
shafts. Furthermore, the shaft material shear yield strain is eshear ¼ 2:7� 10	3; and the Poisson
ratio, u; is 0.3. Finally, the inertia-load parameter is, m ¼ 0:253; which corresponds to a ND
torsional natural frequency of ff ¼ 0:125: All the above parameters satisfy the constraints given in
Eq. (23). The remaining ND parameters, e.g., misalignment angles, d and g; load-torque,
t; external damping coefficient, cd ; and shaft operating speed, f0; will be varied to explore the
stability behavior.

4.1. Nominal system stability

With no misalignment and no load-torque (d ¼ 0; g ¼ 0 and t ¼ 0), the driveline dynamics are
described by the linear time-invariant nominal system in Eq. (18a). In this case, like in Refs. [1,2],
the destabilizing mechanism is the rotating-frame shaft damping, %xv; which gives rise to both the
structural damping matrix, Csd ; and the destabilizing skew-symmetric stiffness matrix, Krd : Fig. 3
shows the whirl stability behavior in terms of the shaft speed, f0; and the external to internal
damping ratio, rd :

The nominal system is stable for all sub-critical operation speeds, regardless of damping. For
supercritical shaft speeds, f0 > f1; external damping, cd ; is required for stable operation. In this
analysis the external dampers are located at the mid-span of both shaft segments, which is the
nodal point of the second bending mode, therefore increasing the external to internal damping
ratio increases the first mode whirl-speed but has no effect on the second mode whirl-speed. This
represents a practical situation for supercritical drivelines where it may be impossible to provide
external damping to all of the higher modes.

The ith mode whirl-speed is defined as the shaft speed at which the real part of the ith
mode eigenvalue first becomes positive and the mode becomes unstable. The overall whirl-speed
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is defined as the slowest speed at which whirl instability occurs. Eq. (24) shows the first
and second mode whirl-speeds, fw1

and fw2
; and the overall whirl-speed, fw; for the nominal

system:

fw1
¼

cd

2z
þ f1; fw2

¼ f2; fw ¼ minðfw1
; fw2

Þ: ð24Þ

Since, in this case, external damping does not increase the second mode whirl-speed, the largest
achievable stable shaft speed range for the nominal system is 0pjf0jof2:

4.2. Full system stability

When misalignment and load-torque are present, the driveline dynamics are described by the
linear, periodic time-varying system given by Eq. (18b). In this analysis, the stability is determined
numerically via Floquet theory by examining the eigenvalues of the Floquet Transition Matrix
(FTM), see Ref. [12]. This technique is numerically intensive but deemed necessary to capture all
the instability behavior of the system.

With Eq. (18b) recast in first order form and the forcing terms set to zero, the system is
written as

X
n

¼ Að%tÞX with X ¼ ½%Z %Z
n

�T and Að %T þ %tÞ ¼ Að%tÞ; ð25Þ

where Að%tÞ is the 2n� 2n periodic system matrix and X is the state vector. %T is the ND period,
which is %T ¼ p=f0: Next, the FTM matrix, denoted by Fð %TÞ; is generated, where

Fð %TÞ ¼ ½fx1ð %TÞg; fx2ð %TÞg;y; fx2nð %TÞg� ð26Þ

and ½fx1ð %TÞg; fx2ð %TÞg;y; fx2nð %TÞg� are the 2n linearly independent solutions obtained by
numerically integrating equation (25) from 0 to %T with the initial conditions

Fð0Þ ¼

1 0 ? 0

0 1 ? 0

^ ^ & 0

0 0 0 1

2
6664

3
7775

2n�2n

: ð27Þ

The FTM matrix, Fð %TÞ; maps the state of the system from some initial state, X0; to the state at
time %t ¼ k %T; such that Xðk %TÞ ¼ Fð %TÞkX0; where k is an integer. Thus the eigenvalues, li; of Fð %TÞ;
which govern the stability of the mapping, also determine the stability of the system.

As discussed in Ref. [13], it is expected that parametric instabilities may occur when the
parameter variation frequency, which in this case is 2f0; is in the neighborhood of the principal,
sum, and difference combination frequencies. Thus the potential shaft speed parametric instability
zones are summarized as

f0 ¼
oni

7onj

2k

����
����þ r; for ½i; j; k ¼ 1; 2; 3;y�; ð28Þ

where oni
and onj

are system natural frequencies and r is a small frequency de-tuning parameter.
Fig. 4 and 5 show how the stability varies with the degree misalignment over the shaft speed

range, 0pjf0jof2; for several values of external damping, cd ; and load-torque, t: Fig. 4 gives the
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results for the case with t ¼ 0 and Fig. 5 gives results for t ¼ 0:5tmax: The misalignment condition
is a so-called offset misalignment, with d ¼ 	g; where the input and output-shafts remain parallel
but are offset by some distance.

Fig. 4 demonstrates that misalignment has both stabilizing and destabilizing effects. On one
hand, for a given nominal whirl-speed, fw; corresponding to a the external/internal damping ratio,
rd ; small amounts of misalignment increase the effective whirl-speed by delaying the onset of
instability to speeds above fw: Thus, misalignment tends to stabilize the whirl instability induced
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by internal damping. On the other hand, despite this stabilizing effect, higher values of
misalignment cause parametric instability for shaft speeds near the sum-type combinations of the
system natural frequencies.

For the case with no external damping, cd ¼ 0; corresponding to fw ¼ 1 (Fig. 4a) it is seen that
increasing the misalignment from 0� to about 2� delays the whirl instability from f0 ¼ 1 to around
f0 ¼ 1:1: However, for misalignment greater than about 2�, bending–torsion and bending–
bending parametric instability zones begin to arise near f0 ¼ ðff þ f1Þ=2 and f0 ¼ f1; respectively.

For cases with non-zero external damping, cd > 0; small amounts of misalignment continue to
provide additional stabilization of the whirl boundary beyond the amount provided by the
external damping (Figs. 4b, d, e and f). Note, this phenomena would also be seen in Fig. 4c but in
this plot cd is such that fw ¼ 1:75; hence the whirl boundary is outside the plot range for this
graph. As the internal damping-induced whirl instability boundary is shifted to higher shaft
speeds with increasing cd ; more misalignment induced sum-type bending–bending and torsion–
bending parametric instability zones are revealed.

Bending–bending instability zones:

f0 ¼ f1 þ r; f0 ¼ 1
4
ðf1 þ f2Þ þ r and f0 ¼ 1

2
ðf1 þ f2Þ þ r and f0 ¼ f2 þ r: ð29aÞ

Torsion–bending instability zones:

f0 ¼ 1
2ðff þ f1Þ þ r and f0 ¼ 1

2ðff þ f2Þ þ r: ð29bÞ

As seen in Eq. (29), the bending–bending combination frequencies are always supercritical,
however the torsion–bending combination frequencies can be sub or supercritical depending on
the torsional natural frequency ff: In this case, since ff ¼ 0:125; the first torque-bending
instability is sub-critical, i.e., f0 ¼ ðff þ f1Þ=2 ¼ 0:5625 and the second torque-bending instability
is supercritical, i.e., f0 ¼ ðff þ f2Þ=2 ¼ 2:0625: Finally, it is also apparent from Fig. 4, that the
parametric instability regions occurring at higher shaft speeds have a wider frequency width for a
given misalignment.

Fig. 5 shows the effect of non-zero load-torque, t; on the misalignment-shaft speed instability
regions. Here it is seen that, similar to misalignment, load-torque has both stabilizing and
destabilizing effects. On one hand, load-torque is stabilizing since it tends to enhance the
misalignment-induced stabilization of the whirl instability. This can be seen by comparing Fig. 4
with Fig. 5. This stabilization is most likely related to the asymmetric stiffness coupling matrix,
K0; which is a function of misalignment, load-inertia, load-torque and shaft speed. This is
consistent with the results from Zorzi and Nelson [1], where it was shown that bearing stiffness
anisotropy delayed the whirl instability to higher speeds. In this case it is not bearing stiffness
anisotropy, rather it is an effective stiffness anisotropy created by misalignment and load-torque
acting through K0:

On the other hand, load-torque is destabilizing since it increases the size of the misalignment
induced torsion–bending instability. Furthermore load-torque causes instability at the bending–
bending instability zones independent of the misalignment. This is illustrated in Fig. 5 where the
bending–bending instability zones have a finite frequency width even at zero misalignment.
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4.3. Bending–bending parametric instability

In this sub-section, since misalignment and load-torque independently cause instability at shaft
speeds near the sum-type bending–bending combination frequencies, both kinds of instability are
examined. Figs. 6 and 7 show the effect of external damping on the load-torque and misalignment
induced bending–bending instability regions.

Fig. 6 shows the misalignment induced bending–bending instability regions with t ¼ 0 for
several values of cd : The size of the misalignment instability regions near f0 ¼ f1 and
f0 ¼ ðf1 þ f2Þ=4 are reduced by increasing the damping coefficient cd (Fig. 6a). However, damping
is not purely stabilizing for the instability region near f0 ¼ ðf1 þ f2Þ=2: In this case, damping
increases the minimum value of destabilizing misalignment, but also increases the frequency width
of the unstable region (Fig. 6b).
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Fig. 7 shows the load-torque induced bending–bending instability regions with d ¼ g ¼ 0� for
several values of cd : Here, again external damping tends to shrink the instability region near
f0 ¼ f1 but causes spreading of the instability region near f0 ¼ ðf1 þ f2Þ=2:

4.4. Torsion–bending parametric instability

In this sub-section, the behavior of the misalignment induced torsion–bending instability zones
is studied. Fig. 8 and 9 show the first and second torque–bending instability zones near f0 ¼
ðff þ f1Þ=2 and f0 ¼ ðff þ f2Þ=2 for several values of external damping, cd ; and load-torque, t: As
seen from the plots and as noted in Section 4.2, the frequency width of both torsion–bending
instability zones increases with load-torque. However, load-torque alone, without misalignment,
is not sufficient to cause torsion–bending instability. Also, Fig. 8 shows that external damping, cd ;
causes spreading of the first torsion–bending instability region.
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Finally, since the external damper does not supply damping to either the torsion mode or the
second bending mode, increasing cd has no effect on the 2nd torsion–bending instability, see Fig. 9.

5. Summary and conclusions

This research explores the effects of internal damping, external damping, misalignment, load-
inertia and load-torque on the stability of a segmented shaft connected with U-Joint couplings
operating at sub and supercritical speeds. A non-dimensional model is developed which includes
both shaft bending and torsion flexibility along with the kinematic effects of static and dynamic
misalignment as well as phasing and torque-windup between the U-Joints. In the equation-of-
motion, internal damping results in both a damping matrix and a skew symmetric stiffness matrix,
while the misalignment, load-inertia and load-torque result in constant and periodic inertia,
damping, and stiffness coupling matrices, as well as forcing terms.

In the case with zero misalignment and zero load-torque, classic whirl instability occurs for
shaft speeds above some supercritical operating speed that depends on the ratio of internal to
external damping. When misalignment and load-torque are present, it is discovered that they both
have stabilizing and destabilizing effects. For a given level of external damping, cd ; small amounts
of misalignment, d and g; and load-torque, t; tend to delay the onset of whirl instability beyond
the nominal whirl-speed fw: This whirl stabilization is most likely a consequence of the stiffness
anisotropy created by the K0 coupling matrix.

Despite the whirl stabilization, misalignment and load-torque can create shaft speed zones of
parametric instability in the sum-type combination frequency regions. Specifically, load-torque
causes instability in the bending–bending regions while misalignment causes instability in both the
bending–bending and torsion–bending regions. Furthermore, load-torque tends to increases the
frequency width of the torsion–bending instability for a given level of misalignment.

The stability results for single U-Joint systems predict both torque induced bending–bending
instability and misalignment induced torsion–bending instability, however misalignment induced
bending–bending instability has not been identified in previous research. This phenomena can be
explained by the presence of misalignment terms in the coupling matrices that allow periodic
cross-coupling between bending modes giving rise to instability in these modes.

Finally, in addition to stabilizing whirl instability, the effectiveness of using external dampers to
stabilize the parametric instability is investigated. It is shown that increasing the external
damping, cd ; causes some parametric instability regions to shrink and others to spread. However,
in both cases, increasing cd is beneficial since it increases the minimum values of destabilizing
torque and misalignment in the parametric instability zones.
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Appendix A. Non-dimensional system matrices

Nominal system matrices:

%M ¼

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

;

%G ¼ f0
e2p2

8

0 f1 0 0 0 0 0 0 0

	f1 0 0 0 0 0 0 0 0

0 0 0 f1 0 0 0 0 0

0 0 	f1 0 0 0 0 0 0

0 0 0 0 0 f2 0 0 0

0 0 0 0 	f2 0 0 0 0

0 0 0 0 0 0 0 f2 0

0 0 0 0 0 0 	f2 0 0

0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

;

%Csd ¼ %xv

f 2
1 0 0 0 0 0 0 0 0

0 f 2
1 0 0 0 0 0 0 0

0 0 f 2
1 0 0 0 0 0 0

0 0 0 f 2
1 0 0 0 0 0

0 0 0 0 f 2
2 0 0 0 0

0 0 0 0 0 f 2
2 0 0 0

0 0 0 0 0 0 f 2
2 0 0

0 0 0 0 0 0 0 f 2
2 0

0 0 0 0 0 0 0 0 f 2
f

2
66666666666666664

3
77777777777777775

;
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%Caux ¼

cd 0 0 0 0 0 0 0 0

0 cd 0 0 0 0 0 0 0

0 0 cd 0 0 0 0 0 0

0 0 0 cd 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

;

%K ¼

f 2
1 0 0 0 0 0 0 0 0

0 f 2
1 0 0 0 0 0 0 0

0 0 f 2
1 0 0 0 0 0 0

0 0 0 f 2
1 0 0 0 0 0

0 0 0 0 f 2
2 0 0 0 0

0 0 0 0 0 f 2
2 0 0 0

0 0 0 0 0 0 f 2
2 0 0

0 0 0 0 0 0 0 f 2
2 0

0 0 0 0 0 0 0 0 f 2
f

2
66666666666666664

3
77777777777777775

;

%Krd ¼ %xvf0

0 f 2
1 0 0 0 0 0 0 0

	f 2
1 0 0 0 0 0 0 0 0

0 0 0 f 2
1 0 0 0 0 0

0 0 	f 2
1 0 0 0 0 0 0

0 0 0 0 0 f 2
2 0 0 0

0 0 0 0 	f 2
2 0 0 0 0

0 0 0 0 0 0 0 f 2
2 0

0 0 0 0 0 0 	f 2
2 0 0

0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

:
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Inertia coupling matrices:

%M0 ¼ mp2

3d2
4

0 	dg
4

0 3d2
2

0 dg
2

0 d
2p

0 d2
4

0 dg
4

0 d2
2

0 	dg
2

0

	dg
4

0 3g2

4
0 	dg

2
0 	3g2

2
0 	 g

2p

0 dg
4

0 g2

4
0 dg

2
0 	g2

2
0

3d2
2

0 	dg
2

0 3d2 0 dg 0 d
p

0 d2
2

0 dg
2

0 d2 0 	dg 0

dg
2

0 	3g2

2
0 dg 0 3g2 0 g

p

0 	dg
2

0 	g2

2
0 	dg 0 g2 0

d
mp 0 	 g

mp 0 2d
mp 0 2g

mp 0 0

2
666666666666666666664

3
777777777777777777775

;

%Ms2 ¼ mp2

0 	d2
2

0 	dg
2

0 	d2 0 dg 0

	d2
2

0 dg
2

0 	d2 0 	dg 0 	 d
2p

0 dg
2

0 g2

2
0 dg 0 	g2 gfs

p

	dg
2

0 g2

2
0 	dg 0 	g2 0 	 g

2p

0 	d2 0 	dg 0 	2d2 0 2dg 0

	d2 0 dg 0 	2d2 0 	2dg 0 	d
p

0 	dg 0 	g2 0 	2dg 0 2g2 	2gfs

p

dg 0 	g2 0 2dg 0 2g2 0 g
p

0 	 d
mp

2gfs

mp 	 g
mp 0 	2d

mp 	4gfs

mp
2g
mp 0

2
66666666666666666664

3
77777777777777777775

;

%Mc2 ¼ mp2

	d2 0 0 0 	2d2 0 0 0 	 d
2p

0 0 0 0 0 0 0 0 0

0 0 g2 0 0 0 	2g2 0 	 g
2p

0 0 0 0 0 0 0 0 	gfs

p

	2d2 0 0 0 	4d2 0 0 0 	d
p

0 0 0 0 0 0 0 0 0

0 0 	2g2 0 0 0 4g2 0 g
p

0 0 0 0 0 0 0 0
2gfs

p

	 d
mp 0 	 g

mp 	2gfs

mp 	2d
mp 0 2g

mp
4gfs

mp 	 g2

mp2

2
6666666666666666664

3
7777777777777777775

:
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Damping coupling matrices:

%C0 ¼ f0mp2

0 d2 0 dg 0 2d2 0 	2dg 0

	d2 0 	dg 0 	2d2 0 2dg 0 0

0 dg 0 g2 0 2dg 0 	2g2 0

	dg 0 	g2 0 	2dg 0 2g2 0 0

0 2d2 0 2dg 0 4d2 0 	4dg 0

	2d2 0 	2dg 0 	4d2 0 4dg 0 0

0 	2dg 0 	2g2 0 	4dg 0 4g2 0

2dg 0 2g2 0 4dg 0 	4g2 0 0

0 0 0 0 0 0 0 0 0

2
666666666666666664

3
777777777777777775

;

%Cs2 ¼ f0mp2

2d2 0 2dg 0 4d2 0 	4dg 0 0

0 0 0 0 0 0 0 0 0

	2dg 0 	2g2 0 	4dg 0 4g2 0 0

0 0 0 0 0 0 0 0 0

4d2 0 4dg 0 8d2 0 	8dg 0 0

0 0 0 0 0 0 0 0 0

4dg 0 4g2 0 8dg 0 	8g2 0 0

0 0 0 0 0 0 0 0 0

4d
mp 0 4g

mp
8gfs

mp
8d
mp 0 	8g

mp 	16gfs

mp
2g2

mp2

2
666666666666666664

3
777777777777777775

;

%Cc2 ¼ f0mp2

0 	2d2 0 	2dg 0 	4d2 0 4dg 0

0 0 0 0 0 0 0 0 0

0 2dg 0 2g2 0 4dg 0 	4g2 0

0 0 0 0 0 0 0 0 0

0 	4d2 0 	4dg 0 	8d2 0 8dg 0

0 0 0 0 0 0 0 0 0

0 	4dg 0 	4g2 0 	8dg 0 8g2 0

0 0 0 0 0 0 0 0 0

0 	4d
mp

8gfs

mp 	4g
mp 0 	8d

mp 	16gfs

mp
8g
mp 0

2
666666666666666664

3
777777777777777775

:
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Stiffness coupling matrices:

%K0 ¼ f 2
0 mp

2

	d2 0 	1
2ðdþ gÞ2 0 2g2 0 	ðd	 gÞ2 0 0

0 	d2 0 1
2
ðd	 gÞ2 0 	4d2 	 2g2 0 ðdþ gÞ2 0

	1
2ðdþ gÞ2 0 	g2 0 ðd	 gÞ2 0 	2d2 0 0

0 1
2
ðd	 gÞ2 0 	g2 0 	ðdþ gÞ2 0 2d2 þ 4g2 0

2g2 0 ðd	 gÞ2 0 	4d2 0 2ðdþ gÞ2 0 0

0 	4d2 	 2g2 0 	ðdþ gÞ2 0 	4d2 0 	2ðd	 gÞ2 0

	ðd	 gÞ2 0 	2d2 0 2ðdþ gÞ2 0 	4g2 0 0

0 dþ gð Þ2 0 2d2 þ 4g2 0 	2ðd	 gÞ2 0 	4g2 0

0 0 0 0 0 0 0 0 0

2
6666666666666666664

3
7777777777777777775

þtp2

0 0 0 	1 0 0 0 	2 0

0 0 1 0 0 0 2 0 0

0 1 0 0 0 	2 0 0 0

	1 0 0 0 2 0 0 0 0

0 0 0 2 0 0 0 4 0

0 0 	2 0 0 0 	4 0 0

0 2 0 0 0 	4 0 0 0

	2 0 0 0 4 0 0 0 0

0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

;

%Kc2 ¼ f 2
0 mp

2

2d2 0 2dg 0 4d2 0 	4dg 0 0

0 0 0 0 0 0 0 0 0

	2dg 0 	2g2 0 	4dg 0 4g2 0 0

0 0 0 0 0 0 0 0 0

4d2 0 4dg 0 8d2 0 	8dg 0 0

0 0 0 0 0 0 0 0 0

4dg 0 4g2 0 8dg 0 	8g2 0 0

0 0 0 0 0 0 0 0 0

4d
mp 0 4g

mp
8gfs

mp
8d
mp 0 	8g

mp 	16gfs

mp
2g2

mp2

2
666666666666666664

3
777777777777777775
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þ tp2

	fs 0 	fs 1 2fs 	4 	2fs 2 0

0 fs 1 fs 	4 	2fs 2 2fs 0

	fs 1 fs 0 2fs 	2 	6fs 4 0

1 fs 0 	fs 	2 	2fs 4 6fs 	g
p

2fs 	4 2fs 	2 	4fs 0 4fs 	4 0

	4 	2fs 	2 	2fs 0 4fs 	4 	4fs 0

	2fs 2 	6fs 4 4fs 	4 4fs 0 0

2 2fs 4 6fs 	4 	4fs 0 	4fs
2g
p

0 0 0 	2g
mp 0 0 0 4g

mp 0

2
666666666666666664

3
777777777777777775

;

%Ks2 ¼ f 2
0 mp

2

0 2d2 0 	 d	 gð Þ2 0 4d2 0 	2 dþ gð Þ2 0

0 0 d2 þ g2 0 0 0 2ðd2 þ g2Þ 0 0

0 d	 gð Þ2 0 	2g2 0 	2 dþ gð Þ2 0 4g2 0

	ðd2 þ g2Þ 0 0 0 2ðd2 þ g2Þ 0 0 0 0

0 4d2 0 2 dþ gð Þ2 0 8d2 0 4 d	 gð Þ2 0

0 0 	2ðd2 þ g2Þ 0 0 0 	4ðd2 þ g2Þ 0 0

0 2 dþ gð Þ2 0 4g2 0 	4 d	 gð Þ2 0 	8g2 0

	2ðd2 þ g2Þ 0 0 0 4ðd2 þ g2Þ 0 0 0 0

0 4d
mp 	8gfs

mp
4g
mp 0 8d

mp
16gfs

mp 	8g
mp 0

2
66666666666666666664

3
77777777777777777775

þtp2

0 	fs 	1 	fs 4 2fs 	2 	2fs 0

	fs 0 	fs 1 2fs 	4 	2fs 2 0

	1 	fs 0 fs 2 2fs 	4 	6fs
g
p

	fs 1 fs 0 2fs 	2 	6fs 4 0

4 2fs 2 2fs 0 	4fs 4 4fs 0

2fs 	4 2fs 	2 	4fs 0 4fs 	4 0

	2 	2fs 	4 	6fs 4 4fs 0 4fs 	2g
p

	2fs 2 	6fs 4 4fs 	4 4fs 0 0

0 0 2g
mp 0 0 0 	4g

mp 0 0

2
666666666666666664

3
777777777777777775

:
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Forcing terms:

F0 ¼ f 2
0 mp

0

d3
4
þ dg2

4

0

d2g
4
þ g3

4

0

d3
2
þ dg2

2

0

	d2g
2
	 g3

2

0

2
6666666666666666664

3
7777777777777777775

þ tp

	d
2
þ g

2

0

	d
2
	 g

2

0

	d	 g

0

d	 g

0

0

2
66666666666666664

3
77777777777777775

;

Fs2 ¼ f 2
0 mp

	d3
2
	 dg2

2

0

d2g
2
þ g3

2

0

	d3 	 dg2

0

	d2g	 g3

0

	d2
mp 	

g2

mp

2
6666666666666666664

3
7777777777777777775

þ tp

	gfs

d
2
þ g

2
	 gf2

s

gfs

d
2
	 g

2
þ gf2

s

2gfs

d	 gþ 2gf2
s

2gfs

	d	 gþ 2gf2
s

	g2fs

mp

2
6666666666666666664

3
7777777777777777775

;

Fc2 ¼ f 2
0 mp

0

0

0

0

0

0

0

0

	2g2fs

mp

2
666666666666666664

3
777777777777777775

þ tp

d
2
þ g

2
	 gf2

s

gfs

d
2
	 g

2
þ gf2

s

	gfs

d	 gþ 2gf2
s

	2gfs

	d	 gþ 2gf2
s

	2gfs

g2

2mp

2
6666666666666666664

3
7777777777777777775

:
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